Search results

Search for "plane view" in Full Text gives 13 result(s) in Beilstein Journal of Nanotechnology.

Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications

  • August K. Roos,
  • Ermes Scarano,
  • Elisabet K. Arvidsson,
  • Erik Holmgren and
  • David B. Haviland

Beilstein J. Nanotechnol. 2024, 15, 242–255, doi:10.3762/bjnano.15.23

Graphical Abstract
  • fabricating a wafer of sensor chips. We design the cantilever’s plane-view dimensions to achieve ωm/2π in the range of 0.5–10 MHz, corresponding to mechanical spring constant values k in the range of 2–160 N/m for typical device parameters. The wide frequency range allows us to fabricate devices working in
PDF
Album
Full Research Paper
Published 15 Feb 2024

Quantitative wear evaluation of tips based on sharp structures

  • Ke Xu and
  • Houwen Leng

Beilstein J. Nanotechnol. 2024, 15, 230–241, doi:10.3762/bjnano.15.22

Graphical Abstract
  • characterization of the tip. Conversely, if the scanning range is too small, the image might not have enough feature points to characterize the needle tip accurately. Figure 5 shows 2D and 3D images of the TipCheck sample. One of the lines was selected laterally to get the plane view of the 2D TipCheck sample
  • shown in Figure 6. The crest’s location in the plane view indicates potential tips of structures. Images of the AFM probes were acquired using a Thermo Fisher Scientific Quattro model scanning electron microscope system. The imaging parameters for the SEM were set to 20 kV electron beam voltage with a
PDF
Album
Full Research Paper
Published 14 Feb 2024

Spontaneous shape transition of MnxGe1−x islands to long nanowires

  • S. Javad Rezvani,
  • Luc Favre,
  • Gabriele Giuli,
  • Yiming Wubulikasimu,
  • Isabelle Berbezier,
  • Augusto Marcelli,
  • Luca Boarino and
  • Nicola Pinto

Beilstein J. Nanotechnol. 2021, 12, 366–374, doi:10.3762/bjnano.12.30

Graphical Abstract
  • . Despite the relatively wide range of length, these NWs exhibit a narrow distribution in the lateral size, with a mean value of (80 ± 10) nm (Figure 3c). The EDX analysis of a NW in plane-view configuration (Figure 4a) exhibits both Mn and Ge with a homogeneous distribution along the NW length (Figure 4b
PDF
Album
Full Research Paper
Published 28 Apr 2021

A Ni(OH)2 nanopetals network for high-performance supercapacitors synthesized by immersing Ni nanofoam in water

  • Donghui Zheng,
  • Man Li,
  • Yongyan Li,
  • Chunling Qin,
  • Yichao Wang and
  • Zhifeng Wang

Beilstein J. Nanotechnol. 2019, 10, 281–293, doi:10.3762/bjnano.10.27

Graphical Abstract
  • directly used as electrode for a supercapacitor without any binders. The morphologies of the as-dealloyed ribbons and as-prepared electrodes were examined by SEM, as shown in Figure 2a–h. The plane-view (Figure 2a) and the enlarged partial view (Figure 2e) show that the sample after dealloying possesses a
PDF
Album
Full Research Paper
Published 25 Jan 2019

Toward the use of CVD-grown MoS2 nanosheets as field-emission source

  • Geetanjali Deokar,
  • Nitul S. Rajput,
  • Junjie Li,
  • Francis Leonard Deepak,
  • Wei Ou-Yang,
  • Nicolas Reckinger,
  • Carla Bittencourt,
  • Jean-Francois Colomer and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2018, 9, 1686–1694, doi:10.3762/bjnano.9.160

Graphical Abstract
  • earlier report [21]. To have a plane view of the deposited material, the sample was locally capped using FIB-assisted Pt deposition and the cut block was lifted out using an OmniprobeTM. The block was tilted at 90° relative to its original position and mounted onto a TEM grid. The TEM investigations were
  • stored in air for several days before performing the XPS measurements. Thus, the surface-sensitive characterization technique (XPS) shows the dominant presence of the MoS2 phase on the sample surface. Microstructural analysis of the MoS2 NSs In Figure 3, plane-view images of as-grown MoS2 NSs are
  • of MoS2 polycrystals. A high-resolution (HR) TEM image is shown in Figure 3b. The stacking periodicity (the interlayer distance) is found to be around 0.63 nm. The number of layers in a NS is found in the range of 15–20. One should note that the NS thickness cannot be solely determined by plane-view
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018

Interaction-tailored organization of large-area colloidal assemblies

  • Silvia Rizzato,
  • Elisabetta Primiceri,
  • Anna Grazia Monteduro,
  • Adriano Colombelli,
  • Angelo Leo,
  • Maria Grazia Manera,
  • Roberto Rella and
  • Giuseppe Maruccio

Beilstein J. Nanotechnol. 2018, 9, 1582–1593, doi:10.3762/bjnano.9.150

Graphical Abstract
  • . (a) Schematic drawing of the basic steps for the realization of a mask derived from spherical, nanoscale materials by electrostatic self-assembly of nanospheres for the fabrication of (b) nanoholes (c) and nanodisks. SEM plane-view of nanosphere masks obtained by solutions with different salt
  • . SEM plane-view of nanospheres masks obtained for different particle concentrations and absorption times: (a) 2 wt % for 10 min (), (b) 5 wt % for 10 min (), (c) 5 wt % for 1 h (), (d) 5 wt % overnight (). (e) Radial distribution function for different absorption times. In (f) Coverage obtained for
PDF
Album
Full Research Paper
Published 29 May 2018

A simple method for the determination of qPlus sensor spring constants

  • John Melcher,
  • Julian Stirling and
  • Gordon A. Shaw

Beilstein J. Nanotechnol. 2015, 6, 1733–1742, doi:10.3762/bjnano.6.177

Graphical Abstract
  • approach has been to estimate the spring constant from plane view geometry and the Young’s modulus of the appropriate crystallographic orientation. In this case, the qPlus sensor is treated as a uniform, rectangular cantilever and the spring constant is predicted from Euler–Bernoulli beam theory [1][7
  • possible to determine the spring constant of the qPlus sensor from only the plane-view geometry and infer kz(B) simply by where k0 = kz(0) is the spring constant at zero offset. We estimate from Equation 13 that the spring constant of the qPlus sensor can be determined with less than 2% relative standard
  • determined from the plane-view geometry. We estimate that the nominal spring constant of the E158 qPlus sensor is 1902 ± 29 N/m, with an effective length of 2443 ± 21 μm. This spring constant, however, can be significantly higher if the base of the tuning fork is also constrained by the glue, also reducing
PDF
Album
Full Research Paper
Published 14 Aug 2015

Influence of the shape and surface oxidation in the magnetization reversal of thin iron nanowires grown by focused electron beam induced deposition

  • Luis A. Rodríguez,
  • Lorenz Deen,
  • Rosa Córdoba,
  • César Magén,
  • Etienne Snoeck,
  • Bert Koopmans and
  • José M. De Teresa

Beilstein J. Nanotechnol. 2015, 6, 1319–1331, doi:10.3762/bjnano.6.136

Graphical Abstract
  • simulations performed give access to image the x,y plane-view magnetization states along the full depth of the nanowires. One example is the top and bottom layers of the 20 nm thick nanowire with rectangular profile, shown in Figure 8a. The EDWs observed in this nanowire consist of small (extending only
  • nanowires [39][44]. This behavior can also be observed in cross-sectional images of the magnetization extracted along an EDW (y,z plane), where the local magnetization rotation across the whole thickness of the DWs occurs in the x,y plane (see the y,z plane view included in Figure 8a). Thus, the magnetic
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2015

Observing the morphology of single-layered embedded silicon nanocrystals by using temperature-stable TEM membranes

  • Sebastian Gutsch,
  • Daniel Hiller,
  • Jan Laube,
  • Margit Zacharias and
  • Christian Kübel

Beilstein J. Nanotechnol. 2015, 6, 964–970, doi:10.3762/bjnano.6.99

Graphical Abstract
  • thickness and stoichiometry are below a critical value. Keywords: electron irradiation damage; energy-filtered transmission electron microscopy; membrane; plane view; silicon nanocrystals; size control; size distribution; Introduction Si nanocrystals (Si NC) are interesting for applications in third
  • -plane energy-filtered TEM (EFTEM) as was demonstrated for Si NCs formed by low energy Si ion implantation [10][26], plasma-enhanced chemical vapor deposition (PE-CVD) [27] or evaporation [28] followed by a high temperature annealing. The bottleneck in such measurements is the low TEM plane view specimen
  • preparation yield when ultrathin layers are concerned. We circumvent this issue in this work by using nanometer thin, free standing silicon nitride membranes to allow for plane view EFTEM analysis without further sample preparation. Thin layers of Si-rich silicon oxynitride (SRON) can be deposited directly on
PDF
Album
Full Research Paper
Published 15 Apr 2015

Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition

  • Brett B. Lewis,
  • Michael G. Stanford,
  • Jason D. Fowlkes,
  • Kevin Lester,
  • Harald Plank and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2015, 6, 907–918, doi:10.3762/bjnano.6.94

Graphical Abstract
  • copper tape adhesive. Figure 6b–d shows plane-view TEM images of the EBID structures at different purification times. A comparison of the TEM images reveals that the platinum grains coarsen and densify with increasing purification time. The estimated grain sizes were 1.97 nm (±0.34 nm), 3.36 nm (±0.69 nm
PDF
Album
Full Research Paper
Published 08 Apr 2015

Topology assisted self-organization of colloidal nanoparticles: application to 2D large-scale nanomastering

  • Hind Kadiri,
  • Serguei Kostcheev,
  • Daniel Turover,
  • Rafael Salas-Montiel,
  • Komla Nomenyo,
  • Anisha Gokarna and
  • Gilles Lerondel

Beilstein J. Nanotechnol. 2014, 5, 1203–1209, doi:10.3762/bjnano.5.132

Graphical Abstract
  • prevent this kind of deposition. Effect of the distance between posts Figure 3a–d shows plane view SEM images of all the structures fabricated with a variation in the pitch (5 to 20 pitches). Figure 3a and Figure 3b are the SEM images of ordered PS spheres formed within a sparse 2D lattice of HSQ posts
PDF
Album
Full Research Paper
Published 04 Aug 2014

Deformation-induced grain growth and twinning in nanocrystalline palladium thin films

  • Aaron Kobler,
  • Jochen Lohmiller,
  • Jonathan Schäfer,
  • Michael Kerber,
  • Anna Castrup,
  • Ankush Kashiwar,
  • Patric A. Gruber,
  • Karsten Albe,
  • Horst Hahn and
  • Christian Kübel

Beilstein J. Nanotechnol. 2013, 4, 554–566, doi:10.3762/bjnano.4.64

Graphical Abstract
  • gives an overview of the samples analyzed. BF-TEM images of the as-deposited sputtered Pd films exhibit a comparable microstructure for sample ncPd 1 and ncPd 2 (Figure 1). Figure 2 displays the microstructure as revealed by ACOM-TEM in plane-view and cross section. It shows an elongated columnar grain
  • structure in growth direction compared to the isotropic structure in plane-view typical for sputter-deposited thin films. CXRD analysis revealed an increased ratio between the XRD intensity of the (111) peak and the (200) peak of 9.8:1 for sample ncPd 1 and 7:1 for sample ncPd 2 compared to 2.1:1 for an
  • crystallite boundary maps corresponding to 0%, 5% and 10% strain are displayed in Figure 4. The grain size increases, with no noticeable evolution of a bimodal size distribution and no significant preferential growth direction is observed in plane-view. In Figure 5a, a quantitative analysis of the crystallite
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2013

Preparation and characterization of supported magnetic nanoparticles prepared by reverse micelles

  • Ulf Wiedwald,
  • Luyang Han,
  • Johannes Biskupek,
  • Ute Kaiser and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2010, 1, 24–47, doi:10.3762/bjnano.1.5

Graphical Abstract
  • phase plate of 20 mrad (π/4 criterion) and a point to point resolution down to 0.1 nm. Figure 7 shows overview TEM images of 3 nm FePt on Si/SiO2 in cross section (a) and plane view geometry (b) after annealing at 650 °C for 90 min. The hexagonal 2D ordering of the particles is clearly visible in Figure
PDF
Album
Video
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities